

2002 DEER Conference

San Diego, California

Dave Smith - bp

August 25th - 29th, 2002

INVESTIGATION OF THE EFFECTS OF FUELS AND AFTERTREATMENT DEVICES ON THE EMISSION PROFILES OF TRUCKS AND BUSES

- •Miriam Lev-On, Chuck Le Tavec, Jim Uihlein, Ken Kimura, BP;
- •Teresa L. Alleman, Douglas R. Lawson, Keith Vertin, NREL;
- •Gregory J. Thompson, Mridul Guatam, Scott Wayne, WVU;
- •Barbara Zielinska, John Sagebiel, DRI;
- Sougato Chatterjee, Johnson Matthey; and
- •Kevin Hallstrom, Engelhard Corporation.

ECD Demonstration Program Participants

Agencies

- National
 - DOE and NREL major supporter & working group member
 - EPA review and comment on test program
- California
 - CARB, SCAQMD and CEC are members of working group

Academia

- West Virginia University
- University of California, Riverside
- Desert Research Institute

Industry

- Engelhard and Johnson-Matthey with support from Corning, NGK-Lock and Fleetguard Nelson
- Cummins, Detroit Diesel, Ford and International

Fleet operators

Fuel Analysis Results

1st Round of testing Test Fuel Properties (1 Sample)

Property	<u>CARB</u>	<u>ECD</u>	ECD-1	
Cetane Number	54.1	64.7	51.3	
Sulfur, ppm	121	7.4	13.1	
SFC Aromatics Total, vol%	22.5	10.9	23.8	
PNA, wt%	4.1	0.9	2.8	

ECD Demonstration Program

Fleet Participants

	ECD w/ Johnson Matthey	ECD w/ Engelhard	ECD with original muffler	CARB w/ original muffler	Total
ARCO	5	5	9	10	29
San Diego Schools	5	5	10	10	30
LA City	5	5	2	3	15
LA MTA	2		8	8	18
Tram vehicles	5	0	15		20
Hertz Equipment Rental	5	5	5	5	20
Ralphs Grocery	5	5	5	5	20
Total	32	25	54	41	152

San Diego School Buses

- 1998 American Transportation 3000RE International Chassis
- International 530 E 8.7 liter I6 turbo, 275hp
- Automatic transmission, 5 speed
- Engelhard DPX catalyzed soot filter
- 32,200 lb test weight

Effect of ECD and ECD-1 Fuels

School Buses with DPX Filters

O, HC and PM emissions were about the same, indicating the oxidative performance of the DPX was about the same with either fuel

Ralphs Grocery Trucks

- 1999 Sterling L-line Chassis
- 1998 Detroit Diesel series 60
- 12.7 liter turbocharged diesel, 430hp
- 10 spd. Manual transmission
- Johnson Matthey CRT and Engelhard DPX
- 42,000 lb test weight
- Twenty trucks tested to investigate vehicle-to-vehicle variability

Grocery Truck Monthly Fuel Economy

- Small average MPG differences attributed to lower energy density of ECD fuel
- Energy density difference for ECD-1 and typical California diesels is negligible

ARCO Tanker Trucks

- Kenworth chassis
- 1995 & 96 Cummins M11 10.8 litre turbocharged diesel, 330hp
- 10 spd. Manual transmission
- Johnson Matthey CRT
- 32,200 lb test weight

ARCO Tanker Trucks

Speciation Data

LA MTA Transit Bus Example

LA MTA Transit Buses

- 1998 Diesel New Flyer Transit Bus
 - Detroit Diesel Series 50
 - 8.5 Liter, 275 hp
 - **5** Speed Automatic Transmission
 - Johnson Matthey CRT
- 2000 and a 2001 CNG New Flyer Transit Bus
 - Detroit Diesel Series 50 G
 - 8.5 Liter, 275 hp
 - **5** Speed Automatic Transmission
 - Close Loop Control
 - **№ No aftertreatment Compliant with Current State and Local Rules**

Effect of ECD and ECD-1 Fuels

Transit Buses with CRT Filters

Round 2 Diesel Transit Bus Emissions, CBD(2)

OO, HC and PM emissions were about the same, indicating the oxidative performance of the CRT was about the same with either fuel

Speciation Testing

- Special speciation test plan was developed
 - enhanced emissions sampling
 - allow detailed analytical characterization
 - particle sizing analysis of the exhaust
- Goals to study what impact fuels and passive catalyzed particulate filters have on:
 - unregulated toxic emission species
 - particle size distribution
 - mutagenicity still awaiting results

Note: Diesel engines without filters were fitted with a standard muffler with no oxidation catalyst.

Diesel vs. CNG Comparison

Note: Total hydrocarbons presented for retrofitted diesel bus, nonmethane hydrocarbons presented for CNG buses

Elemental and Organic Carbon

Volatile Organic Compounds

- nMHC clustering
 - 95 individual compounds identified
 - \blacksquare Hydrocarbon chains with $C_2 C_{11}$
- Five compound classes defined
 - C₂ − C₅ Alkanes
 - C₂ − C₅ Olefins
 - C₆₊ Alkanes
 - C₆₊ Olefins
 - $\mathbf{C}_6 \mathbf{C}_{11}$ Aromatics

nMHCs by Compound Class

Speciation Data - Benzene

Speciation Data - 1,3 Butadiene

Speciation Data - 1,3 Butadiene

- Problems with detecting 1,3 Butadiene
 - Tunnel background levels varied between the morning and afternoon.
 - Difficult to separate from tunnel background levels.
 - Even though samples were analyzed within 2 hours of collection, possibility exists that there were still significant losses.
 - Samples in Tedlar bags can decay rapidly in the presence of diesel exhaust.
 - NO2 and HNO3 may reduce 1,3 Butadiene.

Speciation Data - Carbonyls

Speciation Data - 4+ Ring PAH

Speciation Data - 3 Ring Nitro PAH

LA County MTA Transit Bus Diesel / CNG 1 / CNG 2 Steady-State 40 mph Operation

Speciation Data Summary

Emission Components	ULSD CNG w/DPF
PM	=
NOx	>
THC/NMHC	<<
CO	<<
Benzene	<
Aldehydes	<<
1-3 Butadiene	?
PAH	~
nPAH	~
Particle Size	~

- ULSD w/ DPF shows proven reductions of air toxics and ozone precursors.
- Proven Durability
- Power, performance and reliability not impacted by fuel or filters
- Total Emissions are comparable to CNG Heavy Duty Vehicles
- Preliminary Toxic Score
 - □ Diesel w/ DPF < CNG
 - Awaiting mutagenicity results & CNG with after treatment

Conclusions, continued

- Need to look at the total emissions:
 - Total toxics
 - Ozone Impacts Area specific
- Published SAE Papers
 - **2002-01-0432 & 2002-01-0433**
 - 2002-01-2873 will be available in Oct, 2002
- Websites:
 - www.ecdiesel.com
 - www.ctts.nrel.gov/heavy_vehicle/what/ec_diesel.html